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Synopsis

The flow of a two-dimensional foam through a constriction is investigated numerically with the

bubble model, and results are compared with existing experimental and numerical studies. We

predict the dynamical behavior of the foam by measuring its flowrate as a function of the imposed

pressure drop. We show that two flow regimes can be observed, with an affine relationship between

flowrate and pressure drop. The model also shows that the flowrate increases with the width of the

distribution of bubble sizes. The simulations exhibit a power law dependency of the flowrate in the

width of the constriction. The local properties of the flow are also investigated by measuring the

velocity field, the frequency and direction of plastic events, and main orientations of strain. We show

that the main qualitative features of the plastic and strain tensors fit with existing experiments.

Finally, we test a theoretical model that predicts a relationship among plasticity, deformation, and

strain. VC 2014 The Society of Rheology. [http://dx.doi.org/10.1122/1.4872058]

I. INTRODUCTION

Liquid foams are complex fluids that can exhibit elastic, plastic, and viscous behaviors

when flowing [Weaire and Hutzler (1999); H€ohler and Cohen-Addad (2005)]. In the past

decade, the characterization of their rheology has been the subject of many experimental

and numerical studies. For practical reasons, many of them have focused on different

kinds of two-dimensional (2D) foams (free bubble raft, bubble raft confined under a glass

plate, or bubbles in a Hele-Shaw cell). In particular, the presence of a yield stress, the

shear-thinning properties, or the development of shearbands have been widely investi-

gated [Debr�egeas et al. (2001); Lauridsen et al. (2004); Denkov et al. (2005); Katgert

et al. (2008); Langlois et al. (2008)]. Continuous models able to account for the various

properties observed in experiments and simulations have been proposed, using a viscoe-

lastoplastic rheological description [Janiaud et al. (2006); Marmottant et al. (2008);

Saramito (2009)]. More recently, the nonlocal rheological effects evidenced in emulsions

by Goyon et al. (2008) and modeled by Bocquet et al. (2009) have been included in con-

tinuous models applied in the context of foams by Katgert and van Hecke (2010) and

Barry et al. (2011). However, if the behavior of a foam in a Couette rheometer or under
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simple shear is now well understood, theoretical predictions have to be confirmed in

more complex geometries.

Two geometries have been widely used in rheological experiments on various com-

plex fluids such as emulsions, polymer solutions, or gels: The flow around an obstacle

and the flow through a constriction, where the fluid experiences a brutal contraction fol-

lowed by an expansion (that is, both shear and extensional strain). The former case was

studied experimentally with 2D foams by Dollet et al. (2005b) and Dollet and Graner

(2007), and the predictions of a continuous viscoelastoplastic model in such a geometry

have been successfully tested [Cheddadi et al. (2011)]. The geometry of a constriction

was also recently chosen as a benchmark to investigate various models of 2D liquid

foams [Dollet (2010); Jones et al. (2011); Jones and Cox (2012)]: Experimental observa-

tions have been compared with predictions of simulations based on energy minimization

{Surface Evolver1 and Potts model [Jiang et al. (1999)]}.

The aim of this paper is to apply the bubble model to the same type of flow. This

model was initially introduced in the context of 2D foam rheology in 1995 by Durian

(1995, 1997) and consists in describing a foam as an assembly of soft disk-shaped or

spherical bubbles rather than as a network of elastic films or vertices. It was later shown

by Langlois et al. (2008) that despite its simplicity, an extension of the bubble model was

successful in reproducing the Herschel-Bulkley behavior of a foam under constant shear

[Lauridsen et al. (2004); Denkov et al. (2005); Katgert et al. (2008)], as well as the pres-

ence of shearbands in such a flow when confining plates exert a viscous drag on the bub-

bles [Debr�egeas et al. (2001); Weaire et al. (2008)]. More recently, Sexton et al. (2011)

predicted a new flow regime in a simple shear flow at high strain rates: Bubbles get

trapped in lanes despite their polydispersity, which results in a Bingham rheology. Tighe

et al. (2010) proposed a generic model of the rheology of the bubble model, including the

influence of the packing fraction. Using a model of the effect of lubrication forces in the

thin film that separates two droplets in contact, Meeker et al. (2004) and Seth et al.
(2011) developed a more realistic approach of the dynamics of a 3D emulsion. By taking

into account hydrodynamic lubrication forces in the films, they introduce a coupling

between the local repulsive and viscous forces which both become nonlinear and depend

on the thickness of films (that is, on the local packing fraction). Interestingly, the rheolog-

ical properties of this model are very similar to the outcomes of the bubble model (in

which lubrication effects are not accounted for). Using the pair correlation function pre-

dicted by these simulations, Seth et al. (2011) then proposed an analytical derivation of

the constitutive equation of the emulsion (Herschel-Bulkley of index m¼ 0.50). In all

these studies based on the interaction of overlapping spheres, the behavior of the foam or

emulsion has, however, always been restricted to the linear shear configuration (either

between two walls or in Lees-Edwards boundary conditions) and not in nonhomogeneous

flows.

Given the simplicity of its implementation in any geometry, the bubble model is a

good candidate to test rheological benchmarks such as the flow through a constriction. It

is a dynamic model and, therefore, is able to reproduce rapid flows. Besides, it applies

more realistically to wet foams. It can then be seen as complementary to quasistatic mod-

els (such as those based on Surface Evolver, where mechanical equilibrium is achieved at

each timestep) that describe more accurately dry foams and are less suitable to account

for energy dissipation.

1Brakke, K., Surface Evolver, http://www.susqu.edu/facstaff/b/brakke/evolver/.
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The article is organized as follows: In Sec. II, we describe the implementation of the

bubble model; in Sec. III, we predict the relation between discharge and pressure drop

across the constriction and demonstrate the role of polydispersity. Finally in Sec. IV, we

study the local properties of the flow and compare them to experimental results.

II. NUMERICAL MODEL

The 2D foam, as described by the bubble model, consists in a monolayer of spherical

bubbles (that we represent, seen from above, as disks). The flow of the foam is computed

by solving Newton’s equation of motion for each individual bubble, using classical nu-

merical techniques originally developed for Molecular Dynamics [P€oschel and Schwager

(2005)].

A. Description of the setup

1. Geometrical characteristics

Experimentally, two different techniques have been used to push a 2D foam through a

constriction: Bertho et al. (2006) confined a layer of bubbles between a liquid bath and a

tilted glass plate. Bubbles are driven upward by buoyancy all along the channel.

Therefore, after the constriction, the liquid fraction becomes very high and bubbles do

not constitute a foam anymore. In experiments by Dollet (2010) or Jones and Cox (2012),

bubbles are confined between two horizontal glass plates. In order to push them through

the constriction, the foam is first accumulated in a vertical chamber, which has the effect

of imposing a given pressure drop between entrance and exit of the channel. The local

pressure gradient, however, is not imposed as uniform.

Following the latter method, we study a numerical setup that consists of two parts (see

Fig. 1): In the vertical section of height h, bubbles are accelerated by buoyancy. They are

then pushed into the second section, which constitutes the channel itself: In this section,

the confining plate is horizontal and contains a constriction in the y direction (see Fig. 2).

Periodic boundary conditions are applied in the x-direction: Each bubble leaving the

channel on the right side is reinjected on the left side, at the base of the vertical column.

The channel has a width W¼ 50 R0 and a length L¼ 120 R0, where R0 is the average bub-

ble radius. In the whole article, except Sec. III B, the default setup includes, in the center

FIG. 1. Experimental device equivalent to the numerical setup, viewed from the side. Bubbles are accelerated

by buoyancy over a height h before entering the horizontal channel of length L that contains the constriction.
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of the horizontal section, a constriction of width w¼W/4 and length d¼w. In order to

avoid numerical singularities, the corners of the constriction are rounded with a radius of

curvature equal to the mean bubble radius.

The essential difference between this numerical setup and experiments lies in the com-

pressibility of the bubbles: In the bubble model, because of the overlaps, bubbles can be

compressed, whereas in a Hele-Shaw cell (where the 2D foam is confined between two

glass plates), bubbles can be considered as incompressible. However, an apparent com-
pressibility in 2D can be observed if the foam sits below a glass plate but on top of a liq-

uid bath [see Fig. 2 and Dollet et al. (2005a); Dollet and Graner (2007)]: In this

configuration, bubbles are allowed to expand vertically, which can modify their apparent

area (as viewed from above). Finally, let us note that in our simulation, the pressure drop

is the control parameter and the flowrate is a result of the dynamics, whereas in most ex-

perimental devices [Dollet (2010); Jones and Cox (2012)], the flowrate is imposed.

2. Driving force

A buoyancy force applies to bubbles located in the vertical section

Fd ¼ Dq g Vb uz; (1)

where Vb is the volume of the bubble, g is the gravitational acceleration, and Dq is the

density contrast between the liquid and gas phases. No external force is applied to bub-

bles once they enter the horizontal section. Because of the driving force, bubbles are

pushed upward in the vertical channel, and consequently from left to right in the horizon-

tal channel, toward the constriction: An effective pressure drop Dp appears between en-

trance and exit of the horizontal channel, with

Dp ¼ Dq g h: (2)

The effective pressure gradient applied between both ends of the channel is normalized

by the typical elastic force on a bubble, per unit volume

C ¼ Dp=L

ðjR0Þ=V0

; (3)

FIG. 2. Horizontal section of the setup, seen from above. Bubbles flow from left to right. The liquid fraction is

visibly higher after the constriction than before (see Sec. IV A).
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with V0 ¼ ð4p=3ÞR0
3 the volume of a bubble of mean radius R0. j is the constant of elas-

ticity of bubbles [see Eq. (6)]. In order to keep the number of bubbles constant in all sim-

ulations, the height of the vertical channel is fixed at h¼ 20 R0, and g is varied in order to

impose increasing values of C.

3. Polydispersity and liquid fraction

The bubbles are initially randomly packed within the channel and column. The radius

of each bubble is chosen within a uniform distribution of center R0 and width DR. We

characterize the polydispersity of the foam by the parameter

d ¼ DR=R0: (4)

In our study, the parameter d varies between 0% and 22.5%. In a 2D foam, an apparent

liquid fraction can be defined as the ratio between the apparent area of films and Plateau

borders and the total area available to the foam. By analogy, one may define for the bub-

ble model an effective 2D liquid fraction � as

� ¼ 1 � 1

WðLþ hÞ
XN

i¼1

pRi
2; (5)

where W(Lþ h) is the total area where bubbles are packed, and N is the number of bub-

bles. Let us remark that in this definition, overlaps are neglected, and the parameter �
can, therefore, reach negative values. In the whole article, the average liquid fraction is

chosen as �¼ 0.1, which corresponds to a relatively wet foam. We have not investigated

the role of this parameter in the constriction flow. However, its influence on the rheology

in simple shear flow was already independently studied by Tighe et al. (2010).

B. Interactions between bubbles

1. Repulsive force

Bubbles interact with one another through elastic and viscous forces, as in the original

model developed by Durian (1997). Physically, two bubbles that are pushed into contact

are distorted and their contact surface flattens out to form a film. The increase in total area

generates a repulsive force between the two bubbles, that is, proportional to the liquid-gas

surface tension. In the model, the exact deformation of two bubbles in contact is not

accounted for: Both bubbles remain spherical, overlap, and experience a repulsive force.

When overlapping (and only then), two bubbles /i/ and /j/ interact via a simple spring

force. The displacement of the spring is equal to their radial overlap (see Fig. 3). The elas-

tic repulsive force Fe that bubble j exerts on bubble i is given by

Fe ¼ j
2R0

Ri þ Rj
Dij nij; (6)

where j is the coefficient of elasticity, nij is the normal vector between bubbles i and j,
defined by

nij ¼
ri � rj

jri � rjj
; (7)

and the overlap Dij (see Fig. 3) is given by
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Dij ¼
ðRi þ RjÞ � jri � rjj if ðRi þ RjÞ < jri � rjj
0 otherwise;

(
(8)

where Ri and Rj are the radii of bubbles i and j, centered at ri and rj, respectively, and R0

is the average bubble radius of the entire sample. The ratio 2R0=ðRi þ RjÞ in Eq. (6) takes

into account that larger bubbles are easier to deform than smaller ones (the Laplace pres-

sure in each bubble being inversely proportional to its radius).

2. Dissipative force

A flowing foam dissipates energy by viscous friction in the films and Plateau borders

separating the bubbles. Though the films are not explicitly represented in our model, we

add a viscous component to bubble-bubble interactions. A realistic expression for such

a force would be nonlinear in the relative velocity of the bubbles {the exponent itself

depending on the surfactant properties [Bretherton (1961); Denkov et al. (2005)]}, and

the viscous coefficient would depend on the viscosity of the liquid, the thickness of the

contact film, and its exact shape [Meeker et al. (2004); Saugey et al. (2006)]. Contrary

to the EHD model by Seth et al. (2011), lubrication forces are not accounted for in the

bubble model, and the viscous force between two bubbles does not depend on the thick-

ness of the film (that is, on the overlap Dij). For sake of simplicity and in accordance

with previous implementations of this model [Langlois et al. (2008); Sexton et al.
(2011)], we simplify this interaction: The dissipative force Fv acting on a bubble i in

contact with a bubble j reads

Fv ¼ �cbðvi � vjÞ; (9)

where cb is a dissipation constant and vi and vj are the respective bubble velocities. It has

to be noted that despite the simplicity of the forces implemented in the bubble model, it

exhibits the same rheological properties as the EHD model [Langlois et al. (2008)].

FIG. 3. Overlap Dij between two contacting bubbles of radii Ri and Rj, located at ri and rj, respectively.
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In particular, even if the local viscous force does not depend on the overlap, the resulting

global rheology (and in particular the yield stress of the foam) nevertheless varies with

the packing fraction [Tighe et al. (2010); Seth et al. (2011)].

C. Interactions with walls

1. Friction along the confining plate

The viscous friction along the glass plate is also modeled through a dissipative term,

linear in both the bubble radius and velocity

Fw ¼ �cw
Ri

R0

vi: (10)

The influence of the ratio between the two viscous coefficients cw and cb has already

been investigated in the case of a simple shear flow [Langlois et al. (2008); Weaire et al.
(2008)]. We choose here to restrain our study to the case cw¼ cb.

2. Interactions with channel walls

When a bubble comes in contact with one of the walls (either a lateral wall: y¼�W/2

and y¼W/2 or the constriction itself), it experiences a purely normal force, with a spring

constant j and a dissipative component cb identical to a bubble-bubble collision. The tan-

gential force is zero, making all walls frictionless {in experiments, sliding of bubbles is

often observed at the walls if they are not specifically saw-toothed [Katgert et al. (2008);

Dollet (2010)]}.

D. Time integration

At a given iteration, all forces acting on each bubble are computed. Overlaps between

bubbles are found by using the linked cell algorithm [P€oschel and Schwager (2005)]. An

effective mass is assigned to each bubble and we use the Verlet algorithm (of fourth order)

[P€oschel and Schwager (2005)] to compute the position of each bubble at the next iteration

from Newton’s second law. The mass is chosen so that the motion of each bubble remains

overdamped and inertia is, therefore, negligible in the dynamics: mb being the mass of a

bubble of radius R0, the ratio jmb=cb
2 is set to 1.5� 10�2. In order to compute accurately

each collision between bubbles, the iterative timestep Dt is chosen as 100 times smaller

than the characteristic viscous timescale

Dt ¼ sv

100
with sv ¼

mb

cb
: (11)

For N¼ 2000 bubbles, the computation of 107� 106 iterations takes the order of 2 days

on a desktop PC.

III. FLOWRATE THROUGH THE CONSTRICTION

A. Hydraulic resistance

As in most experiments, the flowrate of bubbles ~Q is defined as the total area of bub-

bles that cross the constriction (x¼ 0) per unit time. It is computed over 4� 107 iterations

once the stationary regime has been reached. It can be normalized in the following way:
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Q ¼
~Q

pR0
2

s ; (12)

where s¼ cb/j is the internal timescale of the material. This timescale characterizes the

interplay between storage (through elastic forces) and dissipation of energy (through vis-

cous forces). We have plotted the normalized flowrate as a function of C in Fig. 4 for a

quasi-monodisperse (d¼ 2.5%) and a strongly polydisperse (d¼ 15%) foam. Below a

given value C0 of the pressure drop, there is no flow through the constriction, which is

consistent with the existence of a yield stress. If this threshold is not reached, bubbles are

pushed together before the constriction and energy is stored in their elastic deformation.

Close to the threshold, the flow is intermittent: Bubbles form force chains and remain

blocked for a certain amount of time before the chains break and a few bubbles pass the

obstacle. Because this motion is very slow, the computation of Q can be dubious, which

makes it difficult to assess directly the exact position of the threshold. Instead we can

estimate its value by fitting the points measured in the flowing regime. As expected, the

more monodisperse the foam, the more the yield threshold C0 increases. Indeed, polydis-

persity increases disorder in the flow and prevents the blockage of the constriction.

However, the value of the threshold appears to vary only slightly with polydispersity:

C0¼ 1.7� 10�3 for d¼ 15% and C0¼ 2.6� 10�3 for d¼ 2.5%.

Beyond the threshold, two regimes are successively observed. In both of them, the

flux of bubbles through the constriction increases in an affine manner with the pressure

drop

Q ¼
0 for C < C0 ;

k1 ðC� C0Þ for C0 < C < Cc ;

k2 ðC� CcÞ þ k1 ðCc � C0Þ for C > Cc :

8><
>: (13)

In the first regime, the best affine fits of numerical points give

d ¼ 15% : k1 ¼ 6:83 6 0:16;

d ¼ 2:5% : k1 ¼ 6:77 6 0:29:

(
(14)

FIG. 4. Flowrate as a function of the pressure drop imposed to the foam for a polydispersity d¼ 15% (black

disks) and d¼ 2.5% (empty triangles). Plain lines are best affine fits in their respective regions of validity.
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Beyond a given value of the pressure gradient, the slope of the curve appears to decay

suddenly: In this second regime, one obtains

d ¼ 15% : k2 ¼ 1:32 6 0:08;

d ¼ 2:5% : k2 ¼ 1:18 6 0:09:

(
(15)

The transition between the two affine regimes happens at Cc¼ 7.1� 10�3 for d¼ 15%

and Cc¼ 6.4� 10�3 for d¼ 2.5%. Considering the uncertainty in the position of the tran-

sition, we cannot conclude that polydispersity has any influence on the value of Cc. First

of all, let us remark that the decrease of the slope k is rather counterintuitive, given that

the same implementation of the bubble model predicts a shear-thinning behavior in a sim-

ple shear flow [Langlois et al. (2008)]. We would, therefore, rather expect the hydraulic

resistance to decrease at high speeds: This tendency was observed by Bertho et al. (2006)

in the “bubble silo,” where the flowrate increases with effective gravity as a power law of

index 3/2. However, it has been reported by Sexton et al. (2011) that at high shear rates

bubbles tend to gather in lanes even in a polydisperse foam. This would increase order in

the foam and, therefore, could favor temporary blockage at the constriction, inducing an

increase of the hydraulic resistance. It has to be noted, though, that we could not observe

any major qualitative difference between the two regimes in the nature of the flow, the

shape of the streamlines, or the various averaged local properties presented in Sec. IV.

However, Sexton et al. (2011) linked the change of rheology at high strain rates to a tran-

sition in velocity fluctuations of bubbles. To test this hypothesis in the present case, we

define at each timestep the local velocity fluctuations

dvxðx; y; tÞ ¼ vxðx; y; tÞ � vxðx; yÞ and dvyðx; y; tÞ ¼ vyðx; y; tÞ � vyðx; yÞ; (16)

where the upper bar denotes a local average over the duration of the flow. The amplitude

of these fluctuations is then averaged over the whole bulk of the channel and over time,

and normalized by the average velocity at the entrance of the channel v0 ¼ ~Q=W

Dvx

v0

¼ hjdvxji
v0

and
Dvy

v0

¼ hjdvyji
v0

: (17)

Both quantities are plotted as a function of C in Fig. 5. At low speed, the velocity fluctua-

tions are quite high (up to 70%), and both components decrease quickly when C is

increased. However, with the change of regime at C¼Cc coincides a strong change

of slope in the decay of velocity fluctuations, which then reach a quasisteady value:

36% < Dvx=v0 < 39% for C> 0.007.

Finally, we can remark that, especially in the slow regime (for low C), polydispersity

does not have a major influence on the slope k. Figure 6 shows that the flowrate increases

monotonically with the width of the size distribution, all other control parameters being

unchanged. This can be easily understood from the fact that polydispersity induces disor-

dered motion by inhibiting the formation of lanes in a linearly sheared flow [Katgert

et al. (2008); Sexton et al. (2011)]. Therefore, it makes the flow through the constriction

more fluid, reducing the hydraulic resistance. The increase of Q with d is more pro-

nounced in the fast regime (for high C): Best affine fits give the relations

Q ¼ 0:014þ 0:040 d for C ¼ 4:6� 10�3 < Cc

0:034þ 0:085 d for C ¼ 1:4� 10�2 > Cc:

(
(18)
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This implies that for a given pressure drop and a given constriction width, the discharge can be

increased by up to 50% simply by changing the polydispersity of the foam from 0% to 20%.

B. Width of the constriction

We varied the width of the constriction and measured the flowrate in the stationary re-

gime for each case, for a polydisperse foam (d¼ 15%; see Fig. 7). The foam flows only

when the width of the hole exceeds a given threshold, the value of which decreases when

the pressure drop increases. Beyond this threshold, the evolution of the flowrate with the

width of the constriction can be fitted by a power law

Q ¼
0:034

w

R0

� 2:8

� �0:78

for C ¼ 4:6� 10�3

0:135
w

R0

� 1:5

� �0:51

for C ¼ 1:4� 10�2:

8>>>><
>>>>:

(19)

FIG. 5. Relative amplitude of velocity fluctuations as a function of the pressure drop.

FIG. 6. Flowrate as a function of polydispersity for C ¼ 4:6� 10�3 < Cc (�) and C ¼ 1:4� 10�2 > Cc (�).

Plain lines are best affine fits of the data.
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The exponent of the power law is observed to decrease when the pressure drop is

increased. Let us note that Bertho et al. (2006) also reported that the flowrate in the bub-

ble silo increased like the square root of the width of the hole above a given threshold,

which we observe here at high flowrate. It remains difficult, however, to assess a general

law for the dependency of the flowrate Q in the three parameters d, w/R0, and C.

IV. LOCAL DESCRIPTION OF THE FLOW

In order to describe the local structure of the flow, we adopt the procedure described by

Graner et al. (2008) and Marmottant et al. (2008). The mean scalar, vectorial, and tensorial

quantities are calculated over a rectangular mesh in boxes whose size is comparable to the

bubble area. These quantities are then averaged over at least 4000 images (representing

4� 107 time-steps), after the steady state (characterized by the stability of the flowrate) has

been reached. In all this section, we only represent the horizontal part of the channel.

A. Velocity field

The average velocity field in the slow regime for a polydisperse foam is presented in

Fig. 8. The same plots in the fast regime show no apparent qualitative difference. The

flow appears to be close to a plug flow both before and after the constriction. However,

contrary to the experiments [Dollet (2010)] (see their Fig. 2), we do not observe any clear

FIG. 7. Dimensionless flowrate of bubbles as a function of the width of the constriction for d¼ 15% and

C¼ 4.6� 10�3 (open circles) and C¼ 1.4� 10�2 (open squares). Plain lines are best fits by power laws valid

beyond the yield threshold [see Eq. (19)]. The dashed line corresponds to the default case w/W¼ 4.

FIG. 8. Velocity field (left) and streamlines (right) for polydispersity d¼ 15% and pressure drop

C¼ 4.6� 10�3<Cc. Blue straight lines are transects A, B, and C used to plot velocity profiles in Fig. 9.
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refocusing of the streamlines after the obstacle. It is indeed understandable that the bub-

ble model is less suited to describe a foam experiencing expansion, considering that bub-

bles only interact through compressive forces.

Velocity profiles are plotted in Fig. 9 along longitudinal transect A (y¼ 11.9 R0) and

transverse transects B (upstream, x¼�22.8 R0) and C (downstream, x¼ 22.8 R0). The

velocity is normalized by its average value v0. As can be seen in Figs. 9(a) and 9(b), the

flow is almost a perfect plug flow at the entrance of the channel. After the constriction

[see Fig. 9(c)], the x-velocity is slightly higher in the center of the channel than on the

sides, which is due to the slow divergence of streamlines (which is also evidenced from

the sign of vy). As has been observed in experiments [Dollet (2010)], there is no deadzone

nor vortices in the corners of the obstacle (neither upstream nor downstream). In Fig.

10(a), we plot the velocity profile along the central line of the channel, normalized by the

maximal velocity reached in the constriction. We observe that the curves collapse rela-

tively well on a single master curve, except when the pressure drop is very close to the

yield threshold. The effective liquid fraction (that is, here, inversely correlated to the

pressure on bubbles) can increase significantly between before and after the constriction,

which explains why the velocity is systematically larger at the exit of the channel than at

the entrance: The density of bubbles being lower than at the entrance, the flowrate is con-

served. Finally, we can also note the presence of a small undershoot in velocity down-

stream of the constriction but only for very low velocities. This undershoot has also been

observed experimentally by Dollet (2010) in a quasistatic flow and by Jones and Cox

(2012) with simulations based on Surface Evolver. In Fig. 10(b), we compare the velocity

profile obtained by Jones and Cox (2012) to the profile we obtain with the two extreme

FIG. 9. Velocity components vx (plain curves) and vy (dashed curves) along (a) line A, (b) line B (upstream),

and (c) line C (downstream). Velocity is normalized by the average velocity v0 ¼ ~Q=W at the entrance of the

channel. Polydispersity is d¼ 15% and pressure drop C ¼ 4:6� 10�3 < Cc.
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values of the pressure drop. The velocity is normalized by its maximal value and the

x-coordinate by the length of the constriction. We can observe that the agreement

between the bubble model and the quasistatic model is relatively good, especially in the

case of a very slow motion, as can be expected.

B. Plasticity

The plasticity of the foam is measured by the density of T1 events that happen when

two pairs of bubbles switch their neighbors. We define pairs of neighboring bubbles by

computing the Delaunay triangulation of the bubble centers: Two bubbles are considered

to be neighbors if their Voronoi domains share a common side. We then measure sepa-

rately the local number of appearing (Na) and disappearing (Nd) contacts in each box of

area Abox and during a time T. The local frequency of T1s is then normalized by the sur-

face of a bubble and the internal timescale

fT1
¼ p R0

2

Abox

s
T

Na þ Nd

2
: (20)

FIG. 10. (a) Normalized streamwise velocity profile along the central line (y¼ 0) for different values of the

pressure drop C and polydispersity d¼ 15%. (b) Our velocity profile in the slowest and fastest regimes is com-

pared to experiments (disks) and Surface Evolver simulations (squares) by Jones and Cox (2012).
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The frequency of T1s is mapped for different values of the polydispersity and pressure

drop in Fig. 11. We observe that the frequency of plastic events is always high close to the

obstacle (both upstream and downstream) and lower inside the constriction itself. It

increases slightly with polydispersity of the foam (that favors disorder) and more signifi-

cantly with the flowrate. In all cases, there is a strong asymmetry between upstream and

downstream, as can be easily seen in the profiles plotted in Fig. 12(a). In this figure, T1 fre-

quencies obtained by Dollet (2010) and Jones and Cox (2012) are normalized by the maxi-

mal value obtained just before the constriction, to eliminate the influence of the flowrate. In

all cases, the number of plastic events is higher just before the constriction than just after.

One must note, however, that the position of the secondary peak of plasticity is systemati-

cally obtained closer to the constriction, and the asymmetry is less pronounced with the

bubble model than in experiments and quasistatic simulations. We can also confirm that

increasing the polydispersity of the foam enhances plasticity in the flow by facilitating T1

events and, therefore, reduces the hydraulic resistance. Figure 12(b) shows that the total

number of T1s, averaged over the whole channel, increases affinely with the flowrate of

bubbles, which is consistent with the fact that plastic events are triggered by local strain.

The plastic tensor P, as defined by Graner et al. (2008), gives information both about

the frequency and the privileged direction of T1 events. The eigenvector corresponding

to the positive eigenvalue of this tensor, which gives the preferential direction of bubble

separation, is mapped in Fig. 13. Separation of bubbles appears to happen preferentially

in the streamwise direction before the constriction, and in the transverse direction after

the constriction.

C. Elastic strain

We compute the texture tensor M following the definition by Asipauskas et al. (2003)

and Graner et al. (2008). This tensor describes quantitatively the pattern formed by bub-

bles: If a link between two neighboring bubbles is the vector ‘ ¼ x
y

� �
, the texture tensor

is defined by

M ¼ h‘� ‘i ¼ hx2i hxyi
hxyi hy2i

� �
; (21)

FIG. 11. Local frequency of T1s for both monodisperse and polydisperse samples and (a) C¼ 3.4� 10�3 and

(b) C¼ 1.1� 10�2. Grayscale is arbitrary and identical for all figures.
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where averaging is done over all links found in a given box and during a given time. The

average square distance between neighbors is directly given by the trace of this tensor.

The main direction of strain is given by the eigenvector associated with the largest eigen-

value [see Fig. 14(b)]. For a monodisperse 2D foam arranged in a hexagonal packing, the

texture tensor would have two identical eigenvalues [see Fig. 14(a)].

Contrary to what happens in experiments and Surface Evolver or Potts model simula-

tions [Jones et al. (2011)], bubbles in our model remain as disks and, therefore, cannot be

much stretched nor compressed (small overlaps aside). This appears clearly if we com-

pute the normalized extensional component of the texture tensor

Mn ¼
Mxx �Myy

Mxx þMyy
: (22)

As can be seen in Fig. 15, in our simulations, jMnj does not exceed 0.1, whereas it can be

of the order of 0.5 in experiments [Jones and Cox (2012)]. For more clarity, we plot the

FIG. 12. (a) Number of T1s per unit bubble and internal timescale along the central line y¼ 0, for

C ¼ 1:1� 10�2 > Cc, compared with experimental data from Dollet (2010) and numerical data from Jones and

Cox (2012) (personal communication). (b) Average T1 frequency in the channel as a function of the flowrate for

d¼ 15% and same pressure drop.
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same profile with an amplified value of Mn to make the comparison easier. As in experi-

ments and quasistatic simulations, bubbles are extended streamwise before the constric-

tion (Mn> 0) and transversally after the constriction (Mn< 0). However, one must note

that in the bubble model, the sign inversion occurs in the middle of the constriction,

whereas Jones and Cox (2012) find it just after the constriction. The absolute extension

of bubbles in the bubble model is observed to be lower after the constriction than before,

which is not the case in experiments. The very small values obtained for Mn imply that if

we plot a map of the texture tensor, its representative ellipses look like circles, making it

difficult to identify directions of compression and stretching. Therefore, we rather com-

pute the deviatoric component of the texture tensor

Md ¼M� TrðMÞ
2

I2; (23)

with I2 the identity matrix. The tensor Md has two opposite eigenvalues: The eigenvector

associated with the positive (respectively, negative) one gives the main direction of

stretching (respectively, compression). We map the directions of stretching in Fig. 16:

FIG. 13. Map of the plastic tensor for d¼ 15% and C¼ 1.1� 10�2>Cc: Segments represent the direction asso-

ciated with the positive eigenvalue of P, their length being proportional to the local T1 frequency.

FIG. 14. Links between neighboring bubbles in two cases: (a) The texture tensor is diagonal and has two identi-

cal eigenvalues. (b) The eigenvectors of M are roughly aligned with axes x (eigenvalue k1) and y (eigenvalue

k2> k1).
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Bubbles appear to be stretched toward the constriction in the upstream part and spanwise

in the downstream part. Let us note that the eigenvectors of the deviatoric texture Md are

identical to the eigenvectors of the internal strain U, defined as the comparison between

the observed texture and a texture of reference [Graner et al. (2008)].

D. Relation between strain and plasticity

The constitutive relation among the plastic, deformation, and strain tensors proposed

by Marmottant et al. (2008) predicts that the plastic tensor and the elastic strain should

be aligned. We check this prediction by choosing two regions of interest (red rectangles

in Fig. 16), close to the constriction, where the amount of plastic events is significant. We

compute at each point the angle h(P, U) between the main direction of bubble separation

(associated with the positive eigenvalue of P) and the direction of stretching (associated

with positive eigenvalue of Md). The distribution of these angles in each region of inter-

est is plotted in Fig. 17. The average values of the angle are, respectively,

FIG. 15. Texture Mn along the central axis for d¼ 15% and C¼ 1.1� 10�2. Experimental and numerical results

by Jones and Cox (2012) are shown for comparison. To facilitate comparison, the dashed line represents the pro-

file of Mn amplified so that it reaches the same maximum as in quasistatic simulations.

FIG. 16. Main directions of stretching for d¼ 15% and C¼ 1.1� 10�2 (fast regime). Length of the segments is

proportional to the corresponding eigenvalue of the deviatoric texture tensor. Red rectangles are the two regions

of interest used in Sec. IV D.
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upstream: hhðP;UÞi ¼ 13:8�;

downstream: hhðP;UÞi ¼ 26:9�:
(24)

As a comparison, in his experimental study, Dollet (2010) finds an average angle

hhðP;UÞi ¼ 16� (although he uses the deviatoric stress tensor rd which is equivalent to

Ud). We can conclude that the alignment between the major axes of tensors P and U is

well verified in the region of high plasticity right before the constriction. After the obsta-

cle, the major axes often diverge and this alignment is not verified anymore. However, it

may seem natural since the bubble model is less suited to reproduce the dynamics of the

foam after the constriction, where bubbles can be neighbors without physically interact-

ing. This could explain why the agreement between the model and the theoretical predic-

tion is better upstream than downstream. The good agreement in the upstream part of the

flow tends to indicate that the compressive region (before the constriction) is well mod-

eled and not affected by the fact that the flow downstream differs significantly from its

experimental counterpart.

V. CONCLUSIONS

The bubble model, or soft-disk model, has been applied to the flow of a 2D foam

through a constriction, and its predictions have been quantitatively compared with exist-

ing experimental [Dollet (2010); Jones and Cox (2012)] and numerical [Jones and Cox

(2012)] results. This approach can be seen as complementary to quasistatic simulations

based on Surface Evolver, since it applies to relatively wet foams and allows one to

account for dynamic properties. Furthermore, it is simple to implement and requires only

moderate computational times. The present study proves that its predictions are compati-

ble with existing experimental observations in the constriction geometry.

We have shown that beyond a given threshold, the flowrate of bubbles increases

affinely with the pressure drop applied to the foam. We also predict a further change of

regime, with a sudden increase of the hydraulic resistance at high speeds, although this

change of regime cannot be evidenced in the local properties of the flow. Beyond a mini-

mal threshold, the flowrate of bubbles appears to grow like a power law of the width of

the constriction, the index of which depends on the pressure drop. Finally, we predict that

the width of the size distribution of bubbles has a critical influence on the flow: The fre-

quency of plastic events and the flow velocity always increase with the polydispersity of

FIG. 17. Distribution of the angle between the major axes of the plastic and strain tensors in (a) the region

upstream and (b) the region dowstream of the constriction. Polydispersity is d¼ 15% and pressure drop

C¼ 1.1� 10�2.
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the foam. For a given pressure drop and a given constriction ratio, the flowrate can be

increased by up to 50% simply by adding some polydispersity. These predictions could

easily be verified in future experimental studies, although in most setups, the flowrate,

and not the pressure drop, is imposed.

The bubble model also allows one to compute easily the local properties of the flow,

such as the texture, strain, and plastic tensors. Because of the constraints of the model, the

texture tensor is much more isotropic than in experiments or Potts and Surface Evolver

simulations. However, the main axes of stretching agree with experimental observations,

as does the spatial repartition of plastic events. In particular, we observe a strong density

of T1s in the neighborhood of the constriction, with a clear asymmetry between upstream

and downstream. Finally, although the bubble model appears less accurate downstream of

the constriction, the alignment between plastic and strain tensors, predicted by a tensorial

rheological model [Marmottant et al. (2008)], is well verified before the constriction.

Two major differences between the present simulations and experiments can be under-

lined: Bubbles are never stretched as much as they appear to be, close to the constriction,

in experiments and Surface Evolver simulations, even if we take into account their

Voronoi domains rather the spheres themselves. This could only be solved by computing

the exact deformation of bubbles when in contact, which has been done for instance by

Rognon and Gay (2008) but only for a small number of bubbles. Besides, the bubble model

is more accurate upstream (where the foam experiences compression) than downstream

(where it experiences expansion). This intrinsic limitation in the predictive ability of the

bubble model is not due to the simplicity of the expression of local forces but due to the

fact that bubbles only interact in compression, which is also the case in more realistic mod-

els such as the EHD model by Seth et al. (2011). This drawback could perhaps be solved,

while keeping the simplicity of the bubble model, by adding tensile forces between neigh-

boring bubbles, which would account for the presence of disjoining pressures in the foam.
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